Ecology

Shugart

Herman H. (“Hank”) Shugart, Jr. is a systems ecologist whose primary research interests focus on the simulation modeling of forest ecosystems. He has developed and tested models of biogeochemical cycles, energy flow and secondary succession. In his most recent work, he uses computer models to simulate the growth, birth and death of each tree on small forest plots. The simulations describe changes in forest structure and composition over time, in response to both internal and external sources of perturbation.

Roulston

My primary research area is plant-pollinator interactions, which I study through field, laboratory, and phylogenetic approaches. These include (i) studies of pollen chemistry to characterize the diversity of pollen nutrient rewards; (ii) phylogenetic analyses to associate shifts in pollen nutrient content with evolutionary shifts in pollination syndrome; (iii) observations of pollinator host choices to determine pollinator assessment of pollen nutrition, and (iv) studies of insect development and body size to assess the potential importance of variation in pollen nutrients.

Porter

I have research interests at a variety of scales, from microhabitat utilization of mice to biogeographic structures of entire island chains. Current research projects include: (1) the use of remotely sensed images and geographical information systems to produce chonosequences of insular vegetation, (2) testing of theories of socially induced dispersal, (3) biogeography of insular mammals, and (4) characteristics of image sources (satellites and aerial photographs) that affect perceptions of ecological landscapes.

Pace

I am an aquatic ecologist with broad interests in lake, river, and estuarine ecosystems. I currently have research projects focused on: 1) the detection of leading indicators of ecosystem regime shifts using whole-lake manipulations, 2) sources of organic matter for aquaculture in the Virginia Coastal Reserve, 3) the importance of terrestrial organic matter in supporting freshwater aquatic food webs, and 4) the long-term impacts of a zebra mussel invasion in a river ecosystem.

Mills

Active projects examine the microbial transformations of contaminants and trophic transfer of energy through microorganisms. A main line of inquiry deals with bacteria in the subsurfce (groundwater) environment. Current projects include field and laboratory investigations of hydrological factors controlling the transient removal of agricultural nitrate in sediments of low-relief coastal streams, and the role of autotrophic microbes in the dissolution of carbonates in submerged caves.

McGlathery

My research group focuses on the dynamics of ecosystem change in shallow coastal systems, and the roles of climate, nutrient over-enrichment and species invasions on driving these changes. Current projects include: 1) Blue carbon sequestration in seagrass ecosystems, 2) Seagrass restoration and return of ecosystem services, 3) salt marsh resilience to sea-level rise, 4) ecosystem regime shifts in coastal barrier systems, and 5) impacts of invasive macro algae (Gracilaria).

Lerdau

I am an organismal ecologist with interests in both the ecosystem implications of physiological processes and the evolutionary underpinnings of these processes. My research centers around fundamental questions of resource acquisition and allocation in plants and touches upon such topics as herbivory and tri-trophic interactions, atmospheric chemistry and air pollution, community and ecosystem impacts of biological invasions, and organismal controls over element cycling.

Haynes

The central aim of my research is to elucidate the processes driving fluctuations in population abundance across time and space. I address theory that is relevant to conservation of native and beneficial insects as well as management of agricultural and forest pests. My approach blends field experiments, analysis of spatial data, and theoretical modeling.

Epstein

My current research efforts are in the arctic tundra of North America and Russia, and the temperate forests of the U.S. Mid-Atlantic.  In the Arctic, we are examining the recent dynamics of arctic tundra vegetation in response to changing climate and disturbances, and the effects that these vegetation changes have on other arctic ecosystem properties.  In the U.S. Mid-Atlantic we are examining carbon cycling along successional gradients from old-field to old-growth, as well as carbon-water interactions in topographically complex watersheds.

 

Pages

Subscribe to RSS - Ecology